

Welcome to the Lago project documentation!

Lago Introduction

Lago is an add-hoc virtual framework which helps you build virtualized
environments on your server or laptop for various use cases.

It currently utilizes ‘libvirt’ for creating VMs, but we are working on adding
more providers such as ‘containers’.

Getting started

	Installing Lago
	pip

	RPM Based - Fedora 24+ / CentOS 7.3+
	Install script

	Manual RPM installation

	FAQ

	Troubleshooting

	LagoInitFile Specification
	Sections
	domains

	nets

	Lago SDK
	Starting an environment from the SDK
	Prerequirements

	Prepare the environment

	Starting the environment

	Controlling the environment
	Disk consumption for the workdir

	Differences from the CLI

	Getting started with some Lago Examples!
	Available Examples

	Lago Templates
	Available templates

	Repository metadata

	Configuration
	lago.conf format

	lago.conf look-up

	Overriding parameters with environment variables

	Lago build
	Builders
	virt-customize

	Relation to bootstrap

	Example

	Lago CPU Models in detail

Developing

	CI Process
	Starting a branch

	A clean commit history

	Rerunning the tests

	Asking for reviews

	Getting the pull request merged

	Environment setup
	Requirements

	Style formatting

	Testing your changes

	Getting started developing
	Python!

	Bash

	Libvirt + qemu/kvm

	Git + Github

	Unit tests with py.test

	Functional tests with bats

	Packaging

	Where to go next

Contents

	lago package
	Subpackages
	lago.plugins package
	Submodules

	lago.plugins.cli module

	lago.plugins.output module

	lago.plugins.service module

	lago.plugins.vm module

	lago.providers package
	Subpackages

	Submodules

	lago.brctl module

	lago.build module

	lago.cmd module

	lago.config module

	lago.constants module

	lago.export module

	lago.guestfs_tools module

	lago.lago_ansible module

	lago.log_utils module

	lago.paths module

	lago.prefix module

	lago.sdk module

	lago.sdk_utils module

	lago.service module

	lago.ssh module

	lago.subnet_lease module

	lago.sysprep module

	lago.templates module

	lago.utils module

	lago.validation module

	lago.virt module

	lago.vm module

	lago.workdir module

Releases

	Release process
	Versioning

	RPM Versioning

	Repository layout

	Promotion of artifacts to stable, aka. releasing

	How to mark a major version

	The release procedure on the maintainer side

Changelog

Here you can find the full changelog for this version

Indices and tables

	Index

	Module Index

	Search Page

Installing Lago

Lago is officially supported and tested on Fedora 24+ and CentOS 7.3+
distributions. However, it should be fairly easy to install it on any Linux
distribution that can run libvirt and qemu-kvm using pip,
here we provide instructions also for Ubuntu 16.04 which we test from time to
time. Feel free to open PR if you got it running on a distribution which is not
listed here so it could be added.

pip

	Install system package dependencies:

	CentOS 7.3+

$ yum install -y epel-release centos-release-qemu-ev
$ yum install -y python-devel libvirt libvirt-devel \
 libguestfs-tools libguestfs-devel gcc libffi-devel \
 openssl-devel qemu-kvm-ev

	Fedora 24+

$ dnf install -y python2-devel libvirt libvirt-devel \
 libguestfs-tools libguestfs-devel gcc libffi-devel \
 openssl-devel qemu-kvm

	Ubuntu 16.04+

$ apt-get install -y python-dev build-essential libssl-dev \
 libffi-dev qemu-kvm libvirt-bin libvirt-dev pkg-config \
 libguestfs-tools libguestfs-dev

	Install libguestfs Python bindings, as they are not available on PyPI [3]:

$ pip install http://download.libguestfs.org/python/guestfs-1.36.4.tar.gz

	Install Lago with pip:

$ pip install lago

	Setup permissions(replacing USERNAME accordingly):

	Fedora / CentOS:

$ sudo usermod -a -G qemu,libvirt USERNAME
$ sudo usermod -a -G USERNAME qemu
$ sudo chmod g+x $HOME

	Ubuntu 16.04+ :

$ sudo usermod -a -G libvirtd,kvm USERNAME
$ chmod 0644 /boot/vmlinuz*

	Create a global share for Lago to store templates:

$ sudo mkdir -p /var/lib/lago
$ sudo mkdir -p /var/lib/lago/{repos,store,subnets}
$ sudo chown -R USERNAME:USERNAME /var/lib/lago

Note: If you’d like to store the templates in a different location
look at the Configuration section, and change lease_dir,
template_repos and template_store accordingly. This can be done
after the installation is completed.

	Restart libvirt:

$ systemctl restart libvirtd

	Log out and login again

Thats it! Lago should be working now. You can jump to Lago Examples.

RPM Based - Fedora 24+ / CentOS 7.3+

Install script

	Download the installation script and make it executable:

$ curl https://raw.githubusercontent.com/lago-project/lago-demo/master/install_scripts/install_lago.sh \
 -o install_lago.sh \
 && chmod +x install_lago.sh

	Run the installation script(replacing username with your username):

$ sudo ./install_lago.sh --user [username]

	Log out and login again.

Manual RPM installation

	Add the following repository to a new file at
/etc/yum.repos.d/lago.repo:

For Fedora:

[lago]
baseurl=http://resources.ovirt.org/repos/lago/stable/0.0/rpm/fc$releasever
name=Lago
enabled=1
gpgcheck=0

For CentOS:

[lago]
baseurl=http://resources.ovirt.org/repos/lago/stable/0.0/rpm/el$releasever
name=Lago
enabled=1
gpgcheck=0

For CentOS only, you need EPEL and centos-release-qemu-ev
repositories, those can be installed by running:

$ sudo yum install -y epel-release centos-release-qemu-ev

	With the Lago repository configured, run(for Fedora use dnf instead):

$ sudo yum install -y lago

	Setup group permissions:

$ sudo usermod -a -G lago USERNAME
$ sudo usermod -a -G qemu USERNAME
$ sudo usermod -a -G USERNAME qemu

	Add group execution rights to your home directory: [1]

$ chmod g+x $HOME

	Restart libvirtd:

$ sudo systemctl enable libvirtd
$ sudo systemctl restart libvirtd

	Log out and login again.

FAQ

	Q: After using the install script, how do I fix the permissions for
another username?

A: Run:

$./install_lago.sh -p --user [new_user]

	Q: Can Lago be installed in a Python virtualenv?

	A: Follow the same procedure as in the pip instructions, only run the

	pip installation under your virtualenv. Consult [3] if you want
to install libguestfs Python bindings not from pip.

Troubleshooting

	Problem: QEMU throws an error it can’t access files in my home directory.

Solution: Check again that you have setup the permissions described in the
Manual RPM Installation section. After doing that, log out and log in again.
If QEMU has the proper permissions, the following command should work(
replace some/nested/path with a directory inside your home directory):

$ sudo -u qemu ls $HOME/some/nested/path

	[1]	For more information why this step is needed see
https://libvirt.org/drvqemu.html, at the bottom of
“POSIX users/groups” section.

	[2]	If the installation script does not work for you on the supported
distributions, please open an issue at h
ttps://github.com/lago-project/lago-demo.git

	[3]	(1, 2) libguestfs Python bindings is unfortunately not available on PyPI,
see https://bugzilla.redhat.com/show_bug.cgi?id=1075594 for current
status. You may also use the system-wide package, if those are
available for your distribution. In that case, if using a virtualenv,
ensure you are creating it with ‘–system-site-packages’ option.
For Fedora/CentOS the package is named python2-libguestfs, and for
Ubuntu python-guestfs.

LagoInitFile Specification

Note: this is work under progress, if you’d like to contribute to the
documentation, please feel free to open a PR. In the meanwhile, we recommend
looking at LagoInitFile examples available at:

https://github.com/lago-project/lago-examples/tree/master/init-files

Each environment in Lago is created from an init file, the recommended format
is YAML, although at the moment of writing JSON is still supported. By default,
Lago will look for a file named LagoInitFile in the directory it was
triggered. However you can pick a different file by running:

$ lago init <FILENAME>

Sections

The init file is composed out of two major sections: domains, and nets.
Each virtual machine you wish to create needs to be under the domains
section. nets will define the network topology, and when you add a
nic to a domain, it must be defined in the nets section.

Example:

domains:
 vm-el73:
 memory: 2048
 service_provider: systemd
 nics:
 - net: lago
 disks:
 - template_name: el7.3-base
 type: template
 name: root
 dev: vda
 format: qcow2
 artifacts:
 - /var/log
nets:
 lago:
 type: nat
 dhcp:
 start: 100
 end: 254
 management: true
 dns_domain_name: lago.local

domains

<name>: The name of the virtual machine.

	memory(int)

	The virtual machine memory in GBs.

	vcpu(int)

	Number of virtual CPUs.

	service_provider(string)

	This will instruct which service provider to use when enabling services
in the VM by calling lago.plugins.vm.VMPlugin.service(),
Possible values: systemd, sysvinit.

	cpu_model(string)

	CPU Family to emulate for the virtual machine. The list of supported
types depends on your hardware and the libvirtd version you use,
to list them you can run locally:

$ virsh cpu-models x86_64

	cpu_custom(dict)

	This allows more fine-grained control of the CPU type,
see CPU section for details.

	nics(list)

	Network interfaces. Each network interface must be defined in the
global nets section. By default each nic will be assigned an IP
according to the network definition. However, you may also use
static IPs here, by writing:

nics:
 - net: net-01
 ip: 192.168.220.2

The same network can be declared multiple times for each domain.

	disks(list)

	
	type

	Disk type, possible values:

	template

	A Lago template, this would normally the bootable device.

	file

	A local disk image. Lago will thinly provision it during init
stage, this device will not be bootable. But can obviously
be used for additional storage.

	template_name(string)

	Applies only to disks of type template. This should be one
of the available Lago templates, see Templates section for
the list.

	size(string)

	Disk size to thinly provision in GB. This is only supported in
file disks.

	format(string)

	TO-DO: no docs yet..

	device(string)

	Linux device: vda, sdb, etc. Using a device named “sd*” will use
virtio-scsi.

	build(list)

	This section should describe how to build/configure VMs.
The build/configure action will happen during init.

	virt-customize(dict)

	Instructions to pass to virt-customize [http://libguestfs.org/virt-customize.1.html], where the key is the name
of the option and the value is the arguments for that option.

This operation is only supported on disks which contains OS.

A special instruction is ssh-inject: ''
Which will ensure Lago’s generated SSH keys will be injected
into the VM. This is useful when you don’t want to run the
bootstrap stage.

For example:

- template_name: el7.3-base
 build:
 - virt-customize:
 ssh-inject: ''
 touch: [/root/file1, /root/file2]

See build section for details.

	artifacts(list)

	Paths on the VM that Lago should collect when using lago collect
from the CLI, or collect_artifacts() from
the SDK.

	groups(list)

	Groups this VM belongs to. This is most usefull when deploying the VM
with Ansible.

	bootstrap(bool)

	Whether to run bootstrap stage on the VM’s template disk, defaults
to True.

	ssh-user(string)

	SSH user to use and configure, defaults to root

	vm-provider(string)

	VM Provider plugin to use, defaults to local-libvirt.

	vm-type(string)

	VM Plugin to use. A custom VM Plugin can be passed here,
note that it needs to be available in your Python Entry points.
See lago-ost-plugin [https://github.com/lago-project/lago-ost-plugin/blob/master/setup.cfg] for an example.

	metadata(dict)

	TO-DO: no docs yet..

nets

<name>: The name of the network.

	type(string)

	Type of the network. May be nat or bridge.

Lago SDK

The SDK goal is to automate the creation of virtual environments, by using
Lago directly from Python. Currently, most CLI operations are supported from
the SDK, though not all of them(specifically, snapshot and export).

Starting an environment from the SDK

Prerequirements

	Have Lago installed, see the installation notes.

	Create a LagoInitFile, check out LagoInitFile syntax for more details.

Prepare the environment

Note: This example is available as a Jupyter notebook here [https://github.com/lago-project/lago/tree/master/docs/examples/lago_sdk_one_vm_one_net.ipynb] or converted to
reST here.

Assuming the LagoInitFile is saved in /tmp/el7-init.yaml and contains:

domains:
 vm01:
 memory: 1024
 nics:
 - net: lago
 disks:
 - template_name: el7.3-base
 type: template
 name: root
 dev: sda
 format: qcow2
nets:
 lago:
 type: nat
 dhcp:
 start: 100
 end: 254

Which is a simple setup, containing one CentOS 7.3 virtual machine and
one management network. Then you start the environment by running:

import logging
from lago import sdk

env = sdk.init(config='/tmp/el7-init.yaml',
 workdir='/tmp/my_test_env',
 logfile='/tmp/lago.log',
 loglevel=logging.DEBUG)

	Where:

	
	config is the path to a valid init file, in YAML format.

	workdir is the place Lago will use to save the images and metadata.

	The logfile and loglevel parameters add a FileHandler to
Lago’s root logger.

Note that if this is the first time you are running Lago it will first
download the template(in this example el7-base), which might take a
while [1]. You can follow up the progress by watching the log file, or
alternatively if working in an interactive session, by running:

from lago import sdk
sdk.add_stream_logger()

Which will print all the Lago operations to stdout.

Starting the environment

Once init() method returns, the environment is ready to be
started, taking up from the last example, executing:

env.start()

Would start the VMs specified in the init file, and make them available(among
others) through SSH:

>>> vm = env.get_vms()['vm01']
>>> vm.ssh(['hostname', '-f'])
CommandStatus(code=0, out='vm01.lago.local\n', err='')

You can also run an interactive SSH session:

>>> res = vm.interactive_ssh()
[root@vm01 ~]# ls -lsah
total 20K
0 dr-xr-x---. 3 root root 103 May 28 03:11 .
0 dr-xr-xr-x. 17 root root 224 Dec 12 17:00 ..
4.0K -rw-r--r--. 1 root root 18 Dec 28 2013 .bash_logout
4.0K -rw-r--r--. 1 root root 176 Dec 28 2013 .bash_profile
4.0K -rw-r--r--. 1 root root 176 Dec 28 2013 .bashrc
4.0K -rw-r--r--. 1 root root 100 Dec 28 2013 .cshrc
0 drwx------. 2 root root 29 May 28 03:11 .ssh
4.0K -rw-r--r--. 1 root root 129 Dec 28 2013 .tcshrc
[root@vm01 ~]# exit
exit
>>> res.code
0

Controlling the environment

You can start or stop the environment by calling
start() and stop(), finally
you can destroy the environment with lago.sdk.SDK.destroy() method,
note that it will stop all VMs, and remove the provided working directory.

>>> env.destroy()
>>>

Disk consumption for the workdir

Generally speaking, the workdir disk consumption depends on which operation
you run inside the underlying VMs. Lago uses QCOW2 layered images by default,
so that each environment you create, sets up its own layer on top of the
original template Lago downloaded the first time init was ran with that
specific template. So when the VM starts, it usually consumes less than 30MB.
As you do more operations - the size might increase, as your current image
diverges from the original template. For more information see qemu-img [https://linux.die.net/man/1/qemu-img]

Differences from the CLI

	Creating Different prefixes inside the workdir is not supported. In the
CLI, you can have several prefixes inside a workdir. The reasoning
behind that is that when working from Python, you can manage the
environment directly by your own(using a temporary or fixed path).

	Logging - In the CLI, all log operations are kept in the current prefix
under logs/lago.log path. The SDK keeps that convention, but allows you
to add additional log files by passing log filename and level parameters to
init() command. Additionally, you can work in debug mode, by
logging all commands to stdout and stderr, calling the module-level method
add_stream_logger(). Note that this will log everything
for all environments.

	Prefix class. This is more of an implementation
issue: the core per-environment operations are exposed both for the CLI and
SDK in that class. In order to provide consistency and ease of use
for the SDK, only the methods which make sense for SDK usage are exposed
in the SDK, the CLI does not require that, as the methods aren’t exposed
at all(only verbs in py.

	[1]	On a normal setup, where the templates are already downloaded, the init stage should take less than a minute(but probably at least 15 seconds).

Getting started with some Lago Examples!

Get Lago up & running in no time using one of the available examples

Important: make sure you followed the installation step before to have Lago installed.

Available Examples

	LagoInitFiles examples [https://github.com/lago-project/lago-examples/tree/master/init-files]

	Simple Jenkins server + slaves: Jenkins_Example

	Advanced oVirt example (using nested virtualization): oVirt_Example

	SDK Usage example - GitHub [https://github.com/lago-project/lago/tree/master/docs/examples/lago_sdk_one_vm_one_net.ipynb], or in reST

	Integrating Lago with Pytest [https://github.com/lago-project/lago-examples/tree/master/pytest/init_fixutre]

Lago Templates

We maintain several templates which are publicly available here [http://templates.ovirt.org/repo/], and Lago
will use them by default. We try to ensure each of those templates is fully
functional out of the box. All templates are more or less the same as the
standard cloud image for each distribution.

The templates specification and build scripts are managed in a different
repository [https://github.com/lago-project/lago-images], and it should be fairly easy to create your own templates
repository.

Available templates

	Template name
	OS

	el7-base
	CentOS 7.2

	el7.3-base
	CentOS 7.3

	fc23-base
	Fedora 23

	fc24-base
	Fedora 24

	fc25-base
	Fedora 25

	el6-base
	CentOS 6.7

	debian8-base
	Debian 8

	ubuntu16.04-base
	Ubuntu 16.04

Repository metadata

A templates repository should contain a repo.metadata file describing all
available templates. The repository build script creates this file
automatically. The file contains a serialized JSON object with the members
detailed below. For an example, see the above repository’s metadata file [http://templates.ovirt.org/repo/repo.metadata].

	name:

	The name of the repository.

sources:

<name>: Name of a source.

	type:

	Source type. May be either http or file.

	args:

	Varies depending on the source type.

For an http source, should contain a baseurl member
pointing to the root of the repository on the web.

For a file source, should contain a root member pointing
to the root of the repository on the filesystem.

templates:

<name>: Unique template name.

versions:

<version>: Unique version string.

	source:

	Name of the source from which this template version
was created.

	timestamp:

	Creation time of the template version.

	handle:

	Either a base file name of the template located in the
root directory of the repository, or a root-relative
path to the template file.

Configuration

The recommend method to override the configuration file is by letting
lago auto-generate them:

$ mkdir -p $HOME/.config/lago
$ lago generate-config > $HOME/.config/lago/lago.conf

This will dump the current configuration to $HOME/.config/lago/lago.conf,
and you may edit it to change any parameters. Take into account you should
probably comment out parameters you don’t want to change when editing the file.
Also, all parameters in the configuration files can be overridden by passing
command line arguments or with environment variables, as described below.

lago.conf format

Lago runs without a configuration file by default, for reference-purposes,
when lago is installed from the official packages(RPM or DEB),
a commented-out version of lago.conf(INI format) is installed at
/etc/lago/lago.conf.

In lago.conf global parameters are found under the [lago] section.
All other sections usually map to subcommands(i.e. lago init command
would be under [init] section).

Example:

$ lago generate-config
> [lago]
> # log level to use
> loglevel = info
> logdepth = 3
>
> [init]
> # location to store repos
> template_repos = /var/lib/lago/repos
> ...

lago.conf look-up

Lago attempts to look lago.conf in the following order:

	/etc/lago/lago.conf

	According to XDG standards [https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html] , which are by default:
	/etc/xdg/lago/lago.conf

	/home/$USER/.config/lago/lago.conf

	Any environment variables.

	CLI passed arguments.

If more than one file exists, all files are merged, with the last occurrence
of any parameter found used.

Overriding parameters with environment variables

To differentiate between the root section in the configuration file,
lago uses the following format to look for environment variables:

'LAGO_GLOBAL_VAR' -> variable in [lago] section
'LAGO__SUBCOMMAND__PARAM_1' -> variable in [subcommand] section

Example: changing the template_store which init subcommand uses to
store templates:

check current value:
$ lago generate-config | grep -A4 "init"
> [init]
> # location to store repos
> template_repos = /var/lib/lago/repos
> # location to store temp
> template_store = /var/lib/lago/store

$ export LAGO__INIT__TEMPLATE_STORE=/var/tmp
$ lago generate-config | grep -A4 "init"
> [init]
> # location to store repos
> template_repos = /var/lib/lago/repos
> # location to store temp
> template_store = /var/tmp

Lago build

Lago allows to build / configure VM disks during init stage.
In the init file, the key build should be added to each disk that needs to be configured.

build should map to a list of Builders, where each builder in the list is
a one entry dictionary that maps to a dictionary that holds the options for that builder.

Options are key-value pairs, where the key is the name of the option
(without leading dashes), and the value is the argument for that option.
If the option takes no arguments, the empty string should be set as the value.
If the builder allows specifying an options multiple times, the value should
be a list of arguments.

Note: The build process runs “behind-the-back” of the OS (Before the VM starts), thus
should be used with care.

Builders

Builders are commands that can be used to build/configure VMs.
Builders are called by the order they appear in the init file.

virt-customize

A tool for customizing a virtual machine (install packages, copying files, etc...).
virt-customize is part of the libguestfs tool set which is part of Lago’s dependencies.

virt-customize can be called only on disks which contains an OS.

Depends on the version of virt-customize installed on your system (it can vary between
different OS), all the valid options for virt-customize can be specified in the init file.
For the full list of options please refer to virt-customize documentation [http://libguestfs.org/virt-customize.1.html].

There is a special case when using virt-customize to inject ssh keys. If the
empty string is provided to ssh-inject option, Lago will replace it with
the path to lago’s self generated ssh keys.

Note: If SELinux is enabled in a VM, it’s possible that selinux-relabel
will be required after adding / modifiyng its files.

Relation to bootstrap

Configuration is taking place after Lago runs bootstrap.
You can disable bootstrap to all VMs by passing --skip-bootstrap to
lago init, or by adding bootstrap: false to the VM definition in
the init file (the second allows to control bootstrap per VM).

Since bootstrap is injecting ssh keys to the VMs, If skipping it,
it’s recommended to inject the ssh keys using virt-customize builder
otherwise, shell access to the VM will use password authentication
(more details can be found in the Builders sections in this documents).

Example

In the following example, virt-customize builder will be called on the disk of vm01.

The changes will be:

	Injecting lago’s self generated ssh keys.

	Copy dummy_file from the host to /root in vm01

	Create files /root/file1 and /root/file2 in vm01

	Finish with SELinux relabel of vm01.

domains:
 vm01:
 artifacts: [/var/log]
 bootstrap: false
 disks:
 - build:
 - virt-customize:
 ssh-inject: ''
 copy: dummy_file:/root
 touch: [/root/file1, /root/file2]
 selinux-relabel: ''
 dev: vda
 format: qcow2
 name: root
 path: $LAGO_INITFILE_PATH/lago-basic-suite-4-1-engine_root.qcow2
 template_name: el7.3-base
 template_type: qcow2
 type: template

Lago CPU Models in detail

There are several ways you can configure the CPU model Lago will use
for each VM. This section tries to explain more in-depth how it will be
mapped to libvirt XML.

	vcpu: Number of virtual CPUs.

	cpu_model: <model>: This defines an exact match of a CPU model.
The generated Libvirt <cpu> XML will be:

<cpu>
 <model>Westmere</model>
 <topology cores="1" sockets="3" threads="1"/>
 <feature name="vmx" policy="require"/>
</cpu>

If the vendor of the host CPU and the selected model match, it will attempt
to require vmx on Intel CPUs and svm on AMD CPUs, assuming the host
CPU has that feature.
The topology node will be generated with sockets equals to vcpu
parameter, by default it is set to 2.

	cpu_custom: This allows to override entirely the CPU definition,
by writing the domain CPU XML in YAML syntax, for example, for the following
LagoInitFile:

domains:
 vm-el73:
 vcpu: 2
 cpu_custom:
 '@mode': custom
 '@match': exact
 model:
 '@fallback': allow
 '#text': Westmere
 feature:
 '@policy': optional
 '@name': 'vmx'
 numa:
 cell:
 -
 '@id': 0
 '@cpus': 0
 '@memory': 2048
 '@unit': 'MiB'
 -
 '@id': 1
 '@cpus': 1
 '@memory': 2048
 '@unit': 'MiB'
 ...

This will be the generated <cpu> XML:

<cpu mode="custom" match="exact">
 <model fallback="allow">Westmere</model>
 <feature policy="optional" name="vmx"/>
 <numa>
 <cell id="0" cpus="0" memory="2048" unit="MiB"/>
 <cell id="1" cpus="1" memory="2048" unit="MiB"/>
 </numa>
 <topology cores="1" sockets="2" threads="1"/>
</cpu>
<vcpu>2</vcpu>

The conversion is pretty straight-forward, @ maps to attribute, and
#text to text fields. If topology section is not defined, it will be
added.

	No cpu_custom or cpu_model: Then Libvirt’s host-passthrough will
be used. For more information see: Libvirt CPU model [https://libvirt.org/formatdomain.html#elementsCPU]

CI Process

Here is described the usual workflow of going through the CI process from
starting a new branch to getting it merged and released in the
unstable repo [http://resources.ovirt.org/repos/lago/unstable/0.0].

Starting a branch

First of all, when starting to work on a new feature or fix, you have to start
a new branch (in your fork if you don’t have push rights to the main repo).
Make sure that your branch is up to date with the project’s master:

git checkout -b my_fancy_feature
in case that origin is already lago-project/lago
git reset --hard origin/master

Then, once you can just start working, doing commits to that branch, and
pushing to the remote from time to time as a backup.

Once you are ready to run the ci tests, you can create a pull request to master
branch, if you have hub [https://github.com/github/hub] installed you can do so from command line, if not
use the ui:

$ hub pull-request

That will automatically trigger a test run on ci, you’ll see the status of the
run in the pull request page. At that point, you can keep working on your
branch, probably just rebasing on master regularly and maybe amending/squashing
commits so they are logically meaningful.

A clean commit history

An example of not good pull request history:

	Added right_now parameter to virt.VM.start function

	Merged master into my_fancy_feature

	Added tests for the new parameter case

	Renamed right_now parameter to sudo_right_now

	Merged master into my_fancy_feature

	Adapted test to the rename

This history can be greatly improved if you squashed a few commits:

	Added sudo_right_now parameter to virt.VM.start function

	Added tests for the new parameter case

	Merged master into my_fancy_feature

	Merged master into my_fancy_feature

And even more if instead of merging master, you just rebased:

	Added sudo_right_now parameter to virt.VM.start function

	Added tests for the new parameter case

That looks like a meaningful history :)

Rerunning the tests

While working on your branch, you might want to rerun the tests at some point,
to do so, you just have to add a new comment to the pull request with one of
the following as content:

	ci test please

	ci :+1:

	ci :thumbsup:

Asking for reviews

If at any point, you see that you are not getting reviews, please add the label
‘needs review’ to flag that pull request as ready for review.

Getting the pull request merged

Once the pull request has been reviewed and passes all the tests, an admin can
start the merge process by adding a comment with one of the following as
content:

	ci merge please

	ci :shipit:

That will trigger the merge pipeline, that will run the tests on the merge
commit and deploy the artifacts to the unstable repo [http://resources.ovirt.org/repos/lago/unstable/0.0] on success.

Environment setup

Here are some guidelines on how to set up your development of the lago project.

Requirements

You’ll need some extra packages to get started with the code for lago, assuming
you are runnig Fedora:

> sudo dnf install git mock libvirt-daemon qemu-kvm autotools

And you’ll need also a few Python libs, which you can install from the repos or
use venv or similar, for the sake of this example we will use the repos ones:

> sudo dnf install python-flake8 python-nose python-dulwich yapf

Yapf is not available on older Fedoras or CentOS, you can get it from the
official yapf repo [https://github.com/google/yapf] or try on copr [https://copr.Fedoraproject.org/coprs/fulltext/?fulltext=yapf].

Now you are ready to get the code:

> git clone git@github.com:lago-project/lago.git

From now on all the commands will be based from the root of the cloned repo:

> cd lago

Style formatting

We will accept only patches that pass pep8 and that are formatted with yapf.
More specifically, only patches that pass the local tests:

> make check-local

It’s recommended that you setup your editor to check automatically for pep8
issues. For the yapf formatting, if you don’t want to forget about it, you can
install the pre-commit git hook that comes with the project code:

> ln -s scripts/pre-commit.style .git/pre-commit

Now each time that you run git commit it will automatically reformat the code
you changed with yapf so you don’t have any issues when submitting a patch.

Testing your changes

Once you do some changes, you should make sure they pass the checks, there’s no
need to run on each edition but before submitting a patch for review you should
do it.

You can run them on your local machine, but the tests themselves will install
packages and do some changes to the os, so it’s really recommmended that you
use a vm, or as we do on the CI server, use mock chroots. If you don’t want to
setup mock, skip the next section.

Hopefully in a close future we can use lago for that ;)

Setting up mock_runner.sh with mock (fedora)

For now we are using a script developed by the oVirt devels to generate
chroots and run tests inside them, it’s not packaged yet, so we must get the
code itself:

> cd ..
> git clone git://gerrit.ovirt.org/jenkins

As an alternative, you can just download the script and install them in your
$PATH:

> wget https://gerrit.ovirt.org/gitweb?p=jenkins.git;a=blob_plain;f=mock_configs/mock_runner.sh;hb=refs/heads/master

We will need some extra packages:

> sudo dnf install mock

And, if not running as root (you shouldn’t!) you have to add your user to the
newly created mock group, and make sure the current session is in that group:

> sudo usermod -a -G mock $USER
> newgrp mock
> id # check that mock is listed

Running the tests inside mock

Now we have all the setup we needed, so we can go back to the lago repo and run
the tests, the first time you run them, it will take a while to download all the
required packages and install them in the chroot, but on consecutive runs it
will reuse all the cached chroots.

The mock_runner.sh script allows us to test also different distributions, any
that is supported by mock, for example, to run the tests for fedora 23 you can
run:

> ../jenkins/mock_runner.sh -p fc23

That will run all the check-patch.sh (the -p option) tests inside a chroot,
with a minimal fedora 23 installation. It will leave any logs under the logs
directory and any generated artifacts under exported-artifacts.

Getting started developing

Everyone is welcome to send patches to lago, but we know that not everybody
knows everything, so here’s a reference list of technologies and methodologies
that lago uses for reference.

Python!

Lago is written in python 2.7 (for now), so you should get yourself used to
basic-to-medium python constructs and technics like:

	Basic python:
Built-in types, flow control, pythonisms (import this)

	Object oriented programming (OOP) in python:
Magic methods, class inheritance

Some useful resources:

	Base docs: https://docs.python.org/2.7/

	Built-in types: https://docs.python.org/2.7/library/stdtypes.html

	About classes:
https://docs.python.org/2.7/reference/datamodel.html#new-style-and-classic-classes

	The Zen of Python:

> python -c "import this"

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Bash

Even though there is not much bash code, the functional tests and some support
scripts use it, so better to get some basics on it. We will try to follow the
same standards for it than the oVirt project has [http://ovirt-infra-docs.readthedocs.org/en/latest/General/Infra_Bash_style_guide.html].

Libvirt + qemu/kvm

As we are using intesively libvirt and qemu/kvm, it’s a good idea to get
yourself familiar with the main commands and services:

	libvirt: http://libvirt.org

	virsh client: http://libvirt.org/virshcmdref.html

	qemu (qemu-img is useful to deal with vm disk images):
https://en.wikibooks.org/wiki/QEMU/Images

Also, there’s a library and a set of tools from the libguestfs [http://libguestfs.org/] project that
we use to prepare templates and are very useful when debugging, make sure you
play at least with virt-builder, virt-customize, virt-sparsify and guestmount.

Git + Github

We use git as code version system, and we host it on Github right now, so if
you are not familiar with any of those tools, you should get started with them,
specially you should be able to:

	Clone a repo from github

	Fork a repo from github

	Create/delete/move to branches (git checkout)

	Move to different points in git history (git reset)

	Create/delete tags (git tag)

	See the history (git log)

	Create/amend commits (git commit)

	Retrieve changes from the upstream repository (git fetch)

	Apply your changes on top of the retrieved ones (git rebase)

	Apply your changes as a merge commit (git merge)

	Squash/reorder existing commits (git rebase –interactive)

	Send your changes to the upstream (git push)

	Create a pull request

You can always go to the git docs [http://www.git-scm.com/docs] though there is a lot of good literature
on it too.

Unit tests with py.test

Lately we decided to use py.test [http://pytest.org] for the unit tests, and all the current
unit tests were migrated to it. We encourage adding unit tests to any pull
requests you send.

Functional tests with bats

For the functional tests, we decided to use bats framework [https://github.com/sstephenson/bats]. It’s completely
written in bash, and if you are modifying or adding any functionality, you
should add/modify those tests accordingly. It has a couple of custom
constructs, so take a look to the bats docs [https://github.com/sstephenson/bats#writing-tests] while reading/writing tests.

Packaging

Our preferred distribution vector is though packages. Right now we are only
building for rpm-based system, so right now you can just take a peek on
how to build rpms [http://www.rpm.org/max-rpm/index.html]. Keep in mind also that we try to move as much of the
packaging logic as posible to the python packaging system [https://packaging.python.org/en/latest/distributing/] itself too, worth
getting used to it too.

Where to go next

You can continue setting up your environment and try running the examples
in the readme to get used to lago. Once you get familiar with it, you can pick
any of the existing issues [https://github.com/lago-project/lago/issues] and send a pull request to fix it, so you get
used to the ci process we use to get stuff developed flawlessly and quickly,
welcome!

lago package

Subpackages

	lago.plugins package
	Submodules

	lago.plugins.cli module

	lago.plugins.output module

	lago.plugins.service module
	Service Plugin

	lago.plugins.vm module

	lago.providers package
	Subpackages
	lago.providers.libvirt package
	Submodules

	lago.providers.libvirt.cpu module

	lago.providers.libvirt.network module

	lago.providers.libvirt.utils module

	lago.providers.libvirt.vm module

Submodules

lago.brctl module

lago.build module

lago.cmd module

lago.config module

lago.constants module

	
lago.constants.CONFS_PATH = ['/etc/lago/lago.conf']

	CONFS_PATH - default path to first look for configuration files.

	
lago.constants.LIBEXEC_DIR = '/usr/libexec/lago/'

	LIBEXEC_DIR -

lago.export module

lago.guestfs_tools module

lago.lago_ansible module

lago.log_utils module

lago.paths module

	
class lago.paths.Paths(prefix)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
images(*path)

	

	
logs()

	

	
metadata()

	

	
prefix_lagofile()

	This file represents a prefix that’s initialized

	
prefixed(*args)

	

	
scripts(*args)

	

	
ssh_id_rsa()

	

	
ssh_id_rsa_pub()

	

	
uuid()

	

	
virt(*path)

	

lago.prefix module

lago.sdk module

lago.sdk_utils module

lago.service module

lago.ssh module

lago.subnet_lease module

lago.sysprep module

lago.templates module

lago.utils module

lago.validation module

	
lago.validation.check_import(module_name)

	Search if a module exists, and it is possible to try importing it

	Parameters:	module_name (str [https://docs.python.org/2/library/functions.html#str]) – module to import

	Returns:	True if the package is found

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

lago.virt module

lago.vm module

lago.workdir module

lago.plugins package

	
exception lago.plugins.NoSuchPluginError

	Bases: lago.plugins.PluginError

	
lago.plugins.PLUGIN_ENTRY_POINTS = {'vm': 'lago.plugins.vm', 'vm-service': 'lago.plugins.vm_service', 'vm-provider': 'lago.plugins.vm_provider', 'cli': 'lago.plugins.cli', 'out': 'lago.plugins.output'}

	Map of plugin type string -> setuptools entry point

	
class lago.plugins.Plugin

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Base class for all the plugins

	
exception lago.plugins.PluginError

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
lago.plugins.load_plugins(namespace, instantiate=True)

	Loads all the plugins for the given namespace

	Parameters:	
	namespace (str [https://docs.python.org/2/library/functions.html#str]) – Namespace string, as in the setuptools entry_points

	instantiate (bool [https://docs.python.org/2/library/functions.html#bool]) – If true, will instantiate the plugins too

	Returns:	Returns the list of loaded plugins

	Return type:	dict of str, object [https://docs.python.org/2/library/functions.html#object]

Submodules

lago.plugins.cli module

About CLIPlugins

A CLIPlugin is a subcommand of the lagocli command, it’s ment to group
actions together in a logical sense, for example grouping all the actions
done to templates.

To create a new subcommand for testenvcli you just have to subclass the
CLIPlugin abstract class and declare it in the setuptools as an entry_point,
see this module’s setup.py/setup.cfg for an example:

class NoopCLIplugin(CLIPlugin):
 init_args = {
 'help': 'dummy help string',
 }

 def populate_parser(self, parser):
 parser.addArgument('--dummy-flag', action='store_true')

 def do_run(self, args):
 if args.dummy_flag:
 print "Dummy flag passed to noop subcommand!"
 else:
 print "Dummy flag not passed to noop subcommand!"

You can also use decorators instead, an equivalent is:

@cli_plugin_add_argument('--dummy-flag', action='store_true')
@cli_plugin(help='dummy help string')
def my_fancy_plugin_func(dummy_flag, **kwargs):
 if dummy_flag:
 print "Dummy flag passed to noop subcommand!"
 else:
 print "Dummy flag not passed to noop subcommand!"

Or:

@cli_plugin_add_argument('--dummy-flag', action='store_true')
def my_fancy_plugin_func(dummy_flag, **kwargs):
 "dummy help string"
 if dummy_flag:
 print "Dummy flag passed to noop subcommand!"
 else:
 print "Dummy flag not passed to noop subcommand!"

Then you will need to add an entry_points section in your setup.py like:

setup(
 ...
 entry_points={
 'lago.plugins.cli': [
 'noop=noop_module:my_fancy_plugin_func',
],
 }
 ...
)

Or in your setup.cfg like:

[entry_points]
lago.plugins.cli =
 noop=noop_module:my_fancy_plugin_func

Any of those will add a new subcommand to the lagocli command that can be run
as:

$ lagocli noop
Dummy flag not passed to noop subcommand!

TODO: Allow per-plugin namespacing to get rid of the **kwargs parameter

	
class lago.plugins.cli.CLIPlugin

	Bases: lago.plugins.Plugin

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 33

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
do_run(args)

	Execute any actions given the arguments

	Parameters:	args (Namespace) – with the arguments

	Returns:	None

	
init_args

	Dictionary with the argument to initialize the cli parser (for
example, the help argument)

	
populate_parser(parser)

	Add any required arguments to the parser

	Parameters:	parser (ArgumentParser) – parser to add the arguments to

	Returns:	None

	
class lago.plugins.cli.CLIPluginFuncWrapper(do_run=None, init_args=None)

	Bases: lago.plugins.cli.CLIPlugin

Special class to handle decorated cli plugins, take into account that the
decorated functions have some limitations on what arguments can they
define actually, if you need something complicated, used the abstract class
CLIPlugin instead.

Keep in mind that right now the decorated function must use **kwargs as
param, as it will be passed all the members of the parser, not just
whatever it defined

	
__call__(*args, **kwargs)

	Keep the original function interface, so it can be used elsewhere

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 33

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
add_argument(*argument_args, **argument_kwargs)

	

	
do_run(args)

	

	
init_args

	

	
populate_parser(parser)

	

	
set_help(help=None)

	

	
set_init_args(init_args)

	

	
lago.plugins.cli.cli_plugin(func=None, **kwargs)

	Decorator that wraps the given function in a CLIPlugin

	Parameters:	
	func (callable [https://docs.python.org/2/library/functions.html#callable]) – function/class to decorate

	**kwargs – Any other arg to use when initializing the parser (like help,
or prefix_chars)

	Returns:	cli plugin that handles that method

	Return type:	CLIPlugin

Notes

It can be used as a decorator or as a decorator generator, if used as a
decorator generator don’t pass any parameters

Examples

>>> @cli_plugin
... def test(**kwargs):
... print 'test'
...
>>> print test.__class__
<class 'cli.CLIPluginFuncWrapper'>

>>> @cli_plugin()
... def test(**kwargs):
... print 'test'
>>> print test.__class__
<class 'cli.CLIPluginFuncWrapper'>

>>> @cli_plugin(help='dummy help')
... def test(**kwargs):
... print 'test'
>>> print test.__class__
<class 'cli.CLIPluginFuncWrapper'>
>>> print test.init_args['help']
'dummy help'

	
lago.plugins.cli.cli_plugin_add_argument(*args, **kwargs)

	Decorator generator that adds an argument to the cli plugin based on the
decorated function

	Parameters:	
	*args – Any args to be passed to
argparse.ArgumentParser.add_argument()

	*kwargs – Any keyword args to be passed to
argparse.ArgumentParser.add_argument()

	Returns:	
	Decorator that builds or extends the cliplugin for the

	decorated function, adding the given argument definition

	Return type:	function

Examples

>>> @cli_plugin_add_argument('-m', '--mogambo', action='store_true')
... def test(**kwargs):
... print 'test'
...
>>> print test.__class__
<class 'cli.CLIPluginFuncWrapper'>
>>> print test._parser_args
[(('-m', '--mogambo'), {'action': 'store_true'})]

>>> @cli_plugin_add_argument('-m', '--mogambo', action='store_true')
... @cli_plugin_add_argument('-b', '--bogabmo', action='store_false')
... @cli_plugin
... def test(**kwargs):
... print 'test'
...
>>> print test.__class__
<class 'cli.CLIPluginFuncWrapper'>
>>> print test._parser_args
[(('-b', '--bogabmo'), {'action': 'store_false'}),
 (('-m', '--mogambo'), {'action': 'store_true'})]

	
lago.plugins.cli.cli_plugin_add_help(help)

	Decorator generator that adds the cli help to the cli plugin based on the
decorated function

	Parameters:	help (str [https://docs.python.org/2/library/functions.html#str]) – help string for the cli plugin

	Returns:	
	Decorator that builds or extends the cliplugin for the

	decorated function, setting the given help

	Return type:	function

Examples

>>> @cli_plugin_add_help('my help string')
... def test(**kwargs):
... print 'test'
...
>>> print test.__class__
<class 'cli.CLIPluginFuncWrapper'>
>>> print test.help
my help string

>>> @cli_plugin_add_help('my help string')
... @cli_plugin()
... def test(**kwargs):
... print 'test'
>>> print test.__class__
<class 'cli.CLIPluginFuncWrapper'>
>>> print test.help
my help string

lago.plugins.output module

About OutFormatPlugins

An OutFormatPlugin is used to format the output of the commands that extract
information from the perfixes, like status.

	
class lago.plugins.output.DefaultOutFormatPlugin

	Bases: lago.plugins.output.OutFormatPlugin

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 33

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
format(info_obj, indent='')

	

	
indent_unit = ' '

	

	
class lago.plugins.output.FlatOutFormatPlugin

	Bases: lago.plugins.output.OutFormatPlugin

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 33

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
format(info_dict, delimiter='/')

	This formatter will take a data structure that
represent a tree and will print all the paths
from the root to the leaves

in our case it will print each value and the keys
that needed to get to it, for example:

	vm0:

	net: lago
memory: 1024

will be output as:

vm0/net/lago
vm0/memory/1024

	Args:

	info_dict (dict): information to reformat
delimiter (str): a delimiter for the path components

	Returns:

	str: String representing the formatted info

	
class lago.plugins.output.JSONOutFormatPlugin

	Bases: lago.plugins.output.OutFormatPlugin

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 33

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
format(info_dict)

	

	
class lago.plugins.output.OutFormatPlugin

	Bases: lago.plugins.Plugin

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 33

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
format(info_dict)

	Execute any actions given the arguments

	Parameters:	info_dict (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – information to reformat

	Returns:	String representing the formatted info

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
class lago.plugins.output.YAMLOutFormatPlugin

	Bases: lago.plugins.output.OutFormatPlugin

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 33

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
format(info_dict)

	

lago.plugins.service module

Service Plugin

This plugins are used in order to manage services in the vms

	
class lago.plugins.service.ServicePlugin(vm, name)

	Bases: lago.plugins.Plugin

	
BIN_PATH

	Path to the binary used to manage services in the vm, will be checked
for existence when trying to decide if the serviece is supported on the
VM (see func:is_supported).

	Returns:	Full path to the binary insithe the domain

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 33

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_request_start()

	Low level implementation of the service start request, used by the
func:start method

	Returns:	True if the service succeeded to start, False otherwise

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
_request_stop()

	Low level implementation of the service stop request, used by the
func:stop method

	Returns:	True if the service succeeded to stop, False otherwise

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
alive()

	

	
exists()

	

	
classmethod is_supported(vm)

	

	
start()

	

	
state()

	Check the current status of the service

	Returns:	Which state the service is at right now

	Return type:	ServiceState

	
stop()

	

	
class lago.plugins.service.ServiceState

	Bases: enum.Enum

	
ACTIVE = 2

	

	
INACTIVE = 1

	

	
MISSING = 0

	This state corresponds to a service that is not available in the domain

	
_member_map_ = OrderedDict([('MISSING', <ServiceState.MISSING: 0>), ('INACTIVE', <ServiceState.INACTIVE: 1>), ('ACTIVE', <ServiceState.ACTIVE: 2>)])

	

	
_member_names_ = ['MISSING', 'INACTIVE', 'ACTIVE']

	

	
_member_type_

	alias of object [https://docs.python.org/2/library/functions.html#object]

	
_value2member_map_ = {0: <ServiceState.MISSING: 0>, 1: <ServiceState.INACTIVE: 1>, 2: <ServiceState.ACTIVE: 2>}

	

lago.plugins.vm module

lago.providers package

Subpackages

	lago.providers.libvirt package
	Submodules

	lago.providers.libvirt.cpu module

	lago.providers.libvirt.network module

	lago.providers.libvirt.utils module

	lago.providers.libvirt.vm module

lago.providers.libvirt package

Submodules

lago.providers.libvirt.cpu module

lago.providers.libvirt.network module

lago.providers.libvirt.utils module

lago.providers.libvirt.vm module

Release process

Versioning

For lago we use a similar approach to semantic versioning, that is:

X.Y.Z

For example:

0.1.0
1.2.123
2.0.0
2.0.1

Where:

	Z changes for each patch (number of patches since X.Y tag)

	Y changes from time to time, with milestones (arbitrary bump), only for
backwards compatible changes

	X changes if it’s a non-backwards compatible change or arbitrarily (we
don’t like Y getting too high, or big milestone reached, ...)

The source tree has tags with the X.Y versions, that’s where the packaging
process gets them from.

On each X or Y change a new tag is created.

For now we have only one branch (master) and we will try to keep it that way as
long as possible, if at some point we have to support old versions, then we
will create a branch for each X version in the form:

vX

For example:

v0
v1

There’s a helper script to resolve the current version, based on the last tag
and the compatibility breaking commits since then, to get the version for the
current repo run:

$ scripts/version_manager.py . version

RPM Versioning

The rpm versions differ from the generic version in that they have the
-1 suffix, where the -1 is the release for that rpm (usually will
never change, only when repackaging without any code change, something that is
not so easy for us but if there’s any external packagers is helpful for them)

Repository layout

Tree schema of the repository:

lago
├── stable <-- subdirs for each major version to avoid accidental
│ │ non-backwards compatible ugrade
│ │
│ ├── 0.0 <-- Contains any 0.* release for lago
│ │ ├── ChangeLog_0.0.txt
│ │ ├── rpm
│ │ │ ├── el6
│ │ │ ├── el7
│ │ │ ├── fc22
│ │ │ └── fc23
│ │ └── sources
│ ├── 1.0
│ │ ├── ChangeLog_1.0.txt
│ │ ├── rpm
│ │ │ ├── el6
│ │ │ ├── el7
│ │ │ ├── fc22
│ │ │ └── fc23
│ │ └── sources
│ └── 2.0
│ ├── ChangeLog_2.0.txt
│ ├── rpm
│ │ ├── el6
│ │ ├── el7
│ │ ├── fc22
│ │ └── fc23
│ └── sources
└── unstable <-- Multiple subdirs are needed only if branching
 ├── 0.0 <-- Contains 0.* builds that might or might not have
 │ │ been released
 │ ├── latest <--- keeps the latest build from merged, static
 │ │ url
 │ ├── snapshot-lago_0.0_pipeline_1
 │ ├── snapshot-lago_0.0_pipeline_2
 │ │ ^ contains the rpms created on the pipeline build
 │ │ number 2 for the 0.0 version, this is needed to
 │ │ ease the automated testing of the rpms
 │ │
 │ └── ... <-- this is cleaned up from time to time to avoid
 │ using too much space
 ├── 1.0
 │ ├── latest
 │ ├── snapshot-lago_1.0_pipeline_1
 │ ├── snapshot-lago_pipeline_2
 │ └── ...
 └── 2.0
 ├── latest
 ├── snapshot-lago_2.0_pipeline_1
 ├── snapshot-lago_2.0_pipeline_2
 └── ...

Promotion of artifacts to stable, aka. releasing

The goal is to have an automated set of tests, that check in depth lago, and
run them in a timely fashion, and if passed, deploy to stable.
As right now that’s not yet possible, so for now the tests and deploy is done
manually.

The promotion of the artifacts is done in these cases:

	New major version bump (X+1.0, for example 1.0 -> 2.0)

	New minor version bump (X.Y+1, for exampyre 1.1 -> 1.2)

	If it passed certain time since the last X or Y version bumps
(X.Y.Z+n, for example 1.0.1 -> 1.0.2)

	If there are blocking/important bugfixes (X.Y.Z+n)

	If there are important new features (X.Y+1 or X.Y.Z+n)

How to mark a major version

Whenever there’s a commit that breaks the backwards compatibility, you should
add to it the pseudo-header:

Sem-Ver: api-breaking

And that will force a major version bump for any package built from it, that is
done so in the moment when you submit the commit in gerrit, the packages that
are build from it have the correct version.

After that, make sure that you tag that commit too, so it will be easy to look
for it in the future.

The release procedure on the maintainer side

	Select the snapshot repo you want to release

	
	Test the rpms, for now we only have the tests from projects that use it:

	
	Run all the ovirt tests [http://jenkins.ovirt.org/search/?q=system-tests] on it, make sure it does not break anything,
if there are issues -> open bug [https://bugzilla.redhat.com/enter_bug.cgi?product=lago]

	
	Run vdsm functional tests [http://jenkins.ovirt.org/view/Master%20branch%20per%20project/view/vdsm/], make sure it does not break anything, if

	there are issues -> open bug [https://bugzilla.redhat.com/enter_bug.cgi?product=lago]

	
	On non-major version bump X.Y+1 or X.Y.Z+n

	
	Create a changelog [https://gerrit.ovirt.org/49683] since the base of the tag and keep it aside

	
	On Major version bump X+1.0

	
	
	Create a changelog [https://gerrit.ovirt.org/49683] since the previous .0 tag (X.0) and keep

	it aside

	Deploy the rpms from snapshot to dest repo and copy the ChangeLog from
the tarball to ChangeLog_X.0.txt in the base of the stable/X.0/ dir

	Send email to lago-devel with the announcement and the changelog since
the previous tag that you kept aside, feel free to change the body to your
liking:

Subject: [day-month-year] New lago release - X.Y.Z

Hi everyone! There's a new lago release with version X.Y.Z ready for you to
upgrade!

Here are the changes:
 <CHANGELOG HERE>

Enjoy!

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lago	

 	
 	
 lago.constants	

 	
 	
 lago.paths	

 	
 	
 lago.plugins	

 	
 	
 lago.plugins.cli	

 	
 	
 lago.plugins.output	

 	
 	
 lago.plugins.service	

 	
 	
 lago.providers	

 	
 	
 lago.providers.libvirt	

 	
 	
 lago.validation	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | S
 | U
 | V
 | Y

_

 	
 	__call__() (lago.plugins.cli.CLIPluginFuncWrapper method)

 	_abc_cache (lago.plugins.cli.CLIPlugin attribute)

 	(lago.plugins.cli.CLIPluginFuncWrapper attribute)

 	(lago.plugins.output.DefaultOutFormatPlugin attribute)

 	(lago.plugins.output.FlatOutFormatPlugin attribute)

 	(lago.plugins.output.JSONOutFormatPlugin attribute)

 	(lago.plugins.output.OutFormatPlugin attribute)

 	(lago.plugins.output.YAMLOutFormatPlugin attribute)

 	(lago.plugins.service.ServicePlugin attribute)

 	_abc_negative_cache (lago.plugins.cli.CLIPlugin attribute)

 	(lago.plugins.cli.CLIPluginFuncWrapper attribute)

 	(lago.plugins.output.DefaultOutFormatPlugin attribute)

 	(lago.plugins.output.FlatOutFormatPlugin attribute)

 	(lago.plugins.output.JSONOutFormatPlugin attribute)

 	(lago.plugins.output.OutFormatPlugin attribute)

 	(lago.plugins.output.YAMLOutFormatPlugin attribute)

 	(lago.plugins.service.ServicePlugin attribute)

 	_abc_negative_cache_version (lago.plugins.cli.CLIPlugin attribute)

 	(lago.plugins.cli.CLIPluginFuncWrapper attribute)

 	(lago.plugins.output.DefaultOutFormatPlugin attribute)

 	(lago.plugins.output.FlatOutFormatPlugin attribute)

 	(lago.plugins.output.JSONOutFormatPlugin attribute)

 	(lago.plugins.output.OutFormatPlugin attribute)

 	(lago.plugins.output.YAMLOutFormatPlugin attribute)

 	(lago.plugins.service.ServicePlugin attribute)

 	
 	_abc_registry (lago.plugins.cli.CLIPlugin attribute)

 	(lago.plugins.cli.CLIPluginFuncWrapper attribute)

 	(lago.plugins.output.DefaultOutFormatPlugin attribute)

 	(lago.plugins.output.FlatOutFormatPlugin attribute)

 	(lago.plugins.output.JSONOutFormatPlugin attribute)

 	(lago.plugins.output.OutFormatPlugin attribute)

 	(lago.plugins.output.YAMLOutFormatPlugin attribute)

 	(lago.plugins.service.ServicePlugin attribute)

 	_member_map_ (lago.plugins.service.ServiceState attribute)

 	_member_names_ (lago.plugins.service.ServiceState attribute)

 	_member_type_ (lago.plugins.service.ServiceState attribute)

 	_request_start() (lago.plugins.service.ServicePlugin method)

 	_request_stop() (lago.plugins.service.ServicePlugin method)

 	_value2member_map_ (lago.plugins.service.ServiceState attribute)

A

 	
 	ACTIVE (lago.plugins.service.ServiceState attribute)

 	
 	add_argument() (lago.plugins.cli.CLIPluginFuncWrapper method)

 	alive() (lago.plugins.service.ServicePlugin method)

B

 	
 	BIN_PATH (lago.plugins.service.ServicePlugin attribute)

C

 	
 	check_import() (in module lago.validation)

 	cli_plugin() (in module lago.plugins.cli)

 	cli_plugin_add_argument() (in module lago.plugins.cli)

 	
 	cli_plugin_add_help() (in module lago.plugins.cli)

 	CLIPlugin (class in lago.plugins.cli)

 	CLIPluginFuncWrapper (class in lago.plugins.cli)

 	CONFS_PATH (in module lago.constants)

D

 	
 	DefaultOutFormatPlugin (class in lago.plugins.output)

 	
 	do_run() (lago.plugins.cli.CLIPlugin method)

 	(lago.plugins.cli.CLIPluginFuncWrapper method)

E

 	
 	exists() (lago.plugins.service.ServicePlugin method)

F

 	
 	FlatOutFormatPlugin (class in lago.plugins.output)

 	format() (lago.plugins.output.DefaultOutFormatPlugin method)

 	(lago.plugins.output.FlatOutFormatPlugin method)

 	(lago.plugins.output.JSONOutFormatPlugin method)

 	(lago.plugins.output.OutFormatPlugin method)

 	(lago.plugins.output.YAMLOutFormatPlugin method)

I

 	
 	images() (lago.paths.Paths method)

 	INACTIVE (lago.plugins.service.ServiceState attribute)

 	indent_unit (lago.plugins.output.DefaultOutFormatPlugin attribute)

 	
 	init_args (lago.plugins.cli.CLIPlugin attribute)

 	(lago.plugins.cli.CLIPluginFuncWrapper attribute)

 	is_supported() (lago.plugins.service.ServicePlugin class method)

J

 	
 	JSONOutFormatPlugin (class in lago.plugins.output)

L

 	
 	lago (module)

 	lago.constants (module)

 	lago.paths (module)

 	lago.plugins (module)

 	lago.plugins.cli (module)

 	lago.plugins.output (module)

 	
 	lago.plugins.service (module)

 	lago.providers (module)

 	lago.providers.libvirt (module)

 	lago.validation (module)

 	LIBEXEC_DIR (in module lago.constants)

 	load_plugins() (in module lago.plugins)

 	logs() (lago.paths.Paths method)

M

 	
 	metadata() (lago.paths.Paths method)

 	
 	MISSING (lago.plugins.service.ServiceState attribute)

N

 	
 	NoSuchPluginError

O

 	
 	OutFormatPlugin (class in lago.plugins.output)

P

 	
 	Paths (class in lago.paths)

 	Plugin (class in lago.plugins)

 	PLUGIN_ENTRY_POINTS (in module lago.plugins)

 	PluginError

 	
 	populate_parser() (lago.plugins.cli.CLIPlugin method)

 	(lago.plugins.cli.CLIPluginFuncWrapper method)

 	prefix_lagofile() (lago.paths.Paths method)

 	prefixed() (lago.paths.Paths method)

S

 	
 	scripts() (lago.paths.Paths method)

 	ServicePlugin (class in lago.plugins.service)

 	ServiceState (class in lago.plugins.service)

 	set_help() (lago.plugins.cli.CLIPluginFuncWrapper method)

 	set_init_args() (lago.plugins.cli.CLIPluginFuncWrapper method)

 	
 	ssh_id_rsa() (lago.paths.Paths method)

 	ssh_id_rsa_pub() (lago.paths.Paths method)

 	start() (lago.plugins.service.ServicePlugin method)

 	state() (lago.plugins.service.ServicePlugin method)

 	stop() (lago.plugins.service.ServicePlugin method)

U

 	
 	uuid() (lago.paths.Paths method)

V

 	
 	virt() (lago.paths.Paths method)

Y

 	
 	YAMLOutFormatPlugin (class in lago.plugins.output)

oVirt Installation Example

In this advanced example, you’ll use the oVirt system tests framework
to run a full instance of oVirt with hypervisors and storage.

See the official oVirt system tests documentation [http://ovirt-system-tests.readthedocs.io/en/latest/] for full guidelines on
how to run it.

The Jenkins server example

In this example we will learn how to set up a basic environment with Lago.
The environment will consist of three virtual machines that will host Jenkins infrastructure.

The VMs

	“vm0-server” - Jenkins server

	“vm1-slave” - Jenkins slave

	“vm2-slave” - Jenkins slave

The network

The vms will be connected to the same network, There will be also connectivity between the vms host and the internet.

Prerequisite

	Install Lago [http://lago.readthedocs.io/en/latest/README.html#installation]

	Clone this repository to your machine.

git clone https://github.com/lago-project/lago-demo.git

Let’s start !

From within the cloned repository, run the following commands:

	Create the environment.

lago init

	Start the vms.

lago start

	Installing the vms:

	Jenkins will be installed on the server.

	OpenJDK will be installed on the slaves.

lago deploy

The environment is ready!
Now you can open your favorite browser, enter “vm0-server-ip-adress:8080” and the jenkins dashboard will be opened.
How to figure out what is the ip of “vm0-server” ?
Check out the following commands:

	Open a shell to vm0-server (for any other vm, just replace ‘vm0-server’ with the name of the machine)

lago shell vm0-server

	Print some usefull information about the environment.

lago status

When you done with the enviroment:

	Turn off the vms.

lago stop

	Note:

	To turn on the vms, use:

lago start

And if you will not have a need for the environment in the future:

	Delete the vms.

lago destroy

If this simple example just got you even more interested, join the major leauge and try out the
oVirt example! oVirt_Example

The Lago Project

Lago is an add-hoc virtual framework which helps you build virtualized
environments on your server or laptop for various use cases.

For the official docs see: http://lago.readthedocs.io

Lago SDK Example - one VM one Network

In [1]:

import logging
import tempfile
from textwrap import dedent
from lago import sdk

Create a LagoInitFile, normally this file should be saved to the disk.
Here we will use a temporary file instead. Our environment includes one
CentOS 7.3 VM with one network.

In [6]:

with tempfile.NamedTemporaryFile(delete=False) as init_file:
 init_file.write(dedent("""
 domains:
 vm-01:
 memory: 1024
 nics:
 - net: net-01
 disks:
 - template_name: el7.3-base
 type: template
 name: root
 dev: sda
 format: qcow2
 nets:
 net-01:
 type: nat
 dhcp:
 start: 100
 end: 254
 """))

Now we will initialize the environment by using the init file. Our
workdir will be created automatically if it does not exists. If this
is the first time you are running Lago, it might take a while as it will
download the CentOS 7.3 template. You can monitor its progress by
watching the log file we configured in /tmp/lago.log.

In [7]:

env = sdk.init(config=init_file.name,
 workdir='/tmp/lago_sdk_simple_example',
 loglevel=logging.DEBUG,
 log_fname='/tmp/lago.log')

When the method returns, the environment can be started:

In [8]:

env.start()

Check which VMs are available and get some meta data:

In [10]:

vms = env.get_vms()
print vms

{'vm-01': <lago.vm.DefaultVM object at 0x7f7375db6050>}

In [13]:

vm = vms['vm-01']

Out[13]:

'192.168.202.2'

In [14]:

vm.distro()

Out[14]:

u'el7'

In [19]:

vm.ip()

Out[19]:

'192.168.202.2'

Executing commands in the VM can be done with ssh method:

In [20]:

res = vm.ssh(['hostname', '-f'])

In [21]:

res

Out[21]:

CommandStatus(code=0, out='vm-01.lago.local\n', err='')

Lets stop the environment, here we will use the destroy method,
however you may also use stop and start if you would like to
turn the environment off.

In [22]:

env.destroy()

 _static/file.png

_static/lago_logo_200x200.png

_static/lago_logo.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to the Lago project documentation!

 		Installing Lago

 		pip

 		RPM Based - Fedora 24+ / CentOS 7.3+

 		Install script

 		Manual RPM installation

 		FAQ

 		Troubleshooting

 		LagoInitFile Specification

 		Sections

 		domains

 		nets

 		Lago SDK

 		Starting an environment from the SDK

 		Prerequirements

 		Prepare the environment

 		Starting the environment

 		Controlling the environment

 		Differences from the CLI

 		Getting started with some Lago Examples!

 		Available Examples

 		Lago Templates

 		Available templates

 		Repository metadata

 		Configuration

 		lago.conf format

 		lago.conf look-up

 		Overriding parameters with environment variables

 		Lago build

 		Builders

 		virt-customize

 		Relation to bootstrap

 		Example

 		Lago CPU Models in detail

 		CI Process

 		Starting a branch

 		A clean commit history

 		Rerunning the tests

 		Asking for reviews

 		Getting the pull request merged

 		Environment setup

 		Requirements

 		Style formatting

 		Testing your changes

 		Setting up mock_runner.sh with mock (fedora)

 		Running the tests inside mock

 		Getting started developing

 		Python!

 		Bash

 		Libvirt + qemu/kvm

 		Git + Github

 		Unit tests with py.test

 		Functional tests with bats

 		Packaging

 		Where to go next

 		lago package

 		Subpackages

 		lago.plugins package

 		lago.providers package

 		Submodules

 		lago.brctl module

 		lago.build module

 		lago.cmd module

 		lago.config module

 		lago.constants module

 		lago.export module

 		lago.guestfs_tools module

 		lago.lago_ansible module

 		lago.log_utils module

 		lago.paths module

 		lago.prefix module

 		lago.sdk module

 		lago.sdk_utils module

 		lago.service module

 		lago.ssh module

 		lago.subnet_lease module

 		lago.sysprep module

 		lago.templates module

 		lago.utils module

 		lago.validation module

 		lago.virt module

 		lago.vm module

 		lago.workdir module

 		Release process

 		Versioning

 		RPM Versioning

 		Repository layout

 		Promotion of artifacts to stable, aka. releasing

 		How to mark a major version

 		The release procedure on the maintainer side

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

