

 Navigation

 	
 index

 	
 next |

 	Lago 0.3 documentation

Welcome to Lago’s documentation!

Getting started

Check out the awesome README!

Releases

	Release process
	Versioning

	RPM Versioning

	Repository layout

	Promotion of artifacts to stable, aka. releasing

	How to mark a major version

	The release procedure on the maintainer side

Contents

	lago package
	Subpackages
	lago.plugins package

	Submodules

	lago.brctl module

	lago.config module

	lago.constants module

	lago.dirlock module

	lago.log_utils module

	lago.paths module

	lago.subnet_lease module

	lago.sysprep module

	lago.templates module

	lago.utils module

	lago.virt module

	lago_template_repo package

	ovirtlago package
	Submodules

	ovirtlago.cmd module

	ovirtlago.constants module

	ovirtlago.merge_repos module

	ovirtlago.paths module

	ovirtlago.repoverify module

	ovirtlago.testlib module

	ovirtlago.utils module

	ovirtlago.virt module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lago 0.3 documentation

Release process

Versioning

For lago we use a similar approach to semantic versioning, that is:

X.Y.Z

For example:

0.1.0
1.2.123
2.0.0
2.0.1

Where:

	Z changes for each patch (number of patches since X.Y tag)

	Y changes from time to time, with milestones (arbitrary bump), only for
backwards compatible changes

	X changes if it’s a non-backwards compatible change or arbitrarily (we
don’t like Y getting too high, or big milestone reached, ...)

The source tree has tags with the X.Y versions, that’s where the packaging
process gets them from.

On each X or Y change a new tag is created.

For now we have only one branch (master) and we will try to keep it that way as
long as possible, if at some point we have to support old versions, then we
will create a branch for each X version in the form:

vX

For example:

v0
v1

There’s a helper script to resolve the current version, based on the last tag
and the compatibility breaking commits since then, to get the version for the
current repo run:

$ scripts/version_manager.py . version

RPM Versioning

The rpm versions differ from the generic version in that they have the
-1 suffix, where the -1 is the release for that rpm (usually will
never change, only when repackaging without any code change, something that is
not so easy for us but if there’s any external packagers is helpful for them)

Repository layout

Tree schema of the repository:

lago
├── stable <-- subdirs for each major version to avoid accidental
│ │ non-backwards compatible ugrade
│ │
│ ├── 0.0 <-- Contains any 0.* release for lago
│ │ ├── ChangeLog_0.0.txt
│ │ ├── rpm
│ │ │ ├── el6
│ │ │ ├── el7
│ │ │ ├── fc22
│ │ │ └── fc23
│ │ └── sources
│ ├── 1.0
│ │ ├── ChangeLog_1.0.txt
│ │ ├── rpm
│ │ │ ├── el6
│ │ │ ├── el7
│ │ │ ├── fc22
│ │ │ └── fc23
│ │ └── sources
│ └── 2.0
│ ├── ChangeLog_2.0.txt
│ ├── rpm
│ │ ├── el6
│ │ ├── el7
│ │ ├── fc22
│ │ └── fc23
│ └── sources
└── unstable <-- Multiple subdirs are needed only if branching
 ├── 0.0 <-- Contains 0.* builds that might or might not have
 │ │ been released
 │ ├── latest <--- keeps the latest build from merged, static
 │ │ url
 │ ├── snapshot-lago_0.0_pipeline_1
 │ ├── snapshot-lago_0.0_pipeline_2
 │ │ ^ contains the rpms created on the pipeline build
 │ │ number 2 for the 0.0 version, this is needed to
 │ │ ease the automated testing of the rpms
 │ │
 │ └── ... <-- this is cleaned up from time to time to avoid
 │ using too much space
 ├── 1.0
 │ ├── latest
 │ ├── snapshot-lago_1.0_pipeline_1
 │ ├── snapshot-lago_pipeline_2
 │ └── ...
 └── 2.0
 ├── latest
 ├── snapshot-lago_2.0_pipeline_1
 ├── snapshot-lago_2.0_pipeline_2
 └── ...

Promotion of artifacts to stable, aka. releasing

The goal is to have an automated set of tests, that check in depth lago, and
run them in a timely fashion, and if passed, deploy to stable.
As right now that’s not yet possible, so for now the tests and deploy is done
manually.

The promotion of the artifacts is done in these cases:

	New major version bump (X+1.0, for example 1.0 -> 2.0)

	New minor version bump (X.Y+1, for exampyre 1.1 -> 1.2)

	If it passed certain time since the last X or Y version bumps
(X.Y.Z+n, for example 1.0.1 -> 1.0.2)

	If there are blocking/important bugfixes (X.Y.Z+n)

	If there are important new features (X.Y+1 or X.Y.Z+n)

How to mark a major version

Whenever there’s a commit that breaks the backwards compatibility, you should
add to it the pseudo-header:

Sem-Ver: api-breaking

And that will force a major version bump for any package built from it, that is
done so in the moment when you submit the commit in gerrit, the packages that
are build from it have the correct version.

After that, make sure that you tag that commit too, so it will be easy to look
for it in the future.

The release procedure on the maintainer side

	Select the snapshot repo you want to release

	
	Test the rpms, for now we only have the tests from projects that use it:

	
	Run all the ovirt tests [http://jenkins.ovirt.org/search/?q=system-tests] on it, make sure it does not break anything,
if there are issues -> open bug [https://bugzilla.redhat.com/enter_bug.cgi?product=lago]

	
	Run vdsm functional tests [http://jenkins.ovirt.org/view/Master%20branch%20per%20project/view/vdsm/], make sure it does not break anything, if

	there are issues -> open bug [https://bugzilla.redhat.com/enter_bug.cgi?product=lago]

	
	On non-major version bump X.Y+1 or X.Y.Z+n

	
	Create a changelog [https://gerrit.ovirt.org/49683] since the base of the tag and keep it aside

	
	On Major version bump X+1.0

	
	
	Create a changelog [https://gerrit.ovirt.org/49683] since the previous .0 tag (X.0) and keep

	it aside

	Deploy the rpms from snapshot to dest repo and copy the ChangeLog from
the tarball to ChangeLog_X.0.txt in the base of the stable/X.0/ dir

	Send email to lago-devel with the announcement and the changelog since
the previous tag that you kept aside, feel free to change the body to your
liking:

Subject: [day-month-year] New lago release - X.Y.Z

Hi everyone! There's a new lago release with version X.Y.Z ready for you to
upgrade!

Here are the changes:
 <CHANGELOG HERE>

Enjoy!

 Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lago 0.3 documentation

lago package

Subpackages

	lago.plugins package
	Submodules

	lago.plugins.cli module

Submodules

lago.brctl module

lago.config module

lago.constants module

lago.dirlock module

lago.log_utils module

lago.paths module

lago.subnet_lease module

lago.sysprep module

lago.templates module

lago.utils module

lago.virt module

 Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lago 0.3 documentation

 	lago package

lago.plugins package

Submodules

lago.plugins.cli module

 Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lago 0.3 documentation

lago_template_repo package

 Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Lago 0.3 documentation

ovirtlago package

Submodules

ovirtlago.cmd module

ovirtlago.constants module

ovirtlago.merge_repos module

ovirtlago.paths module

ovirtlago.repoverify module

ovirtlago.testlib module

ovirtlago.utils module

ovirtlago.virt module

 Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Lago 0.3 documentation

Index

 Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

README.html

 Navigation

 		
 index

 		Lago 0.3 documentation »

Getting started

Hello, this describes how to get started with Lago.

Installation

In order to install the framework, you’ll need to build RPMs or acquire them
from a repository.

Latest lago RPMs are built by jenkins job and you can find them here:
http://jenkins.ovirt.org/job/lago_master_build-artifacts-$DIST-x86_64

Where $DIST is either el7, fc21, fc22 or fc23 (this list might be outdated,
take a look at the repo to see the supported distros).

Or you can use the yum repo (it’s updated often right now, and a bit
unstable), you can add it as a repository creating a file under
/etc/yum.repos.d/lago.repo with the following content:

For Fedora:

[lago]
baseurl=http://resources.ovirt.org/repos/lago/stable/0.0/rpm/fc$releasever
name=Lago
enabled=1
gpgcheck=0

For CentOS:

[lago]
baseurl=http://resources.ovirt.org/repos/lago/stable/0.0/rpm/el$releasever
name=Lago
enabled=1
gpgcheck=0

TODO: point to the release rpm once it’s implemented, and use gpgcheck=1

Once you have them, install the following packages:

$ yum install python-lago lago python-lago-ovirt lago-ovirt

This will install all the needed packages.

TODO:explain each package contents and goals

Machine set-up

Virtualization and nested virtualization support

		Make sure that virtualization extension is enabled on the CPU, otherwise,
you might need to enable it in the BIOS. Generally, if virtualization extension
is disabled, dmesg log would contain a line similar to:

kvm: disabled by BIOS

		To make sure that nested virtualization is enabled, run:

$ cat /sys/module/kvm_intel/parameters/nested

This command should print Y if nested virtualization is enabled, otherwise,
enable it the following way:

		Edit /etc/modprobe.d/kvm-intel.conf and add the following line:

options kvm-intel nested=y

		Reboot, and make sure nested virtualization is enabled.

libvirt

Make sure libvirt is configured to run:

$ systemctl enable libvirtd
$ systemctl start libvirtd

SELinux

At the moment, this framework might encounter problems running while SELinux
policy is enforced.

To disable SELinux on the running system, run:

$ setenforce 0

To disable SELinux from start-up, edit /etc/selinux/config and set:

SELINUX=permissive

User setup

Running a testing framework environment requires certain permissions, so the
user running it should be part of certain groups:

Add yourself to lago, mock and qemu groups:

$ usermod -a -G lago USERNAME
$ usermod -a -G mock USERNAME
$ usermod -a -G qemu USERNAME

It is also advised to add qemu user to your group (to be able to store VM files
in home directory):

$ usermod -a -G USERNAME qemu

For the group changes to take place, you’ll need to re-login to the shell.
Make sure running id returns all the aforementioned groups.

Make sure that the qemu user has execution rights to the dir where you will be
creating the prefixes, you can try it out with:

$ sudo -u qemu ls /path/to/the/destination/dir

If it can’t access it, make sure that all the dirs in the path have your user
or qemu groups and execution rights for the group, or execution rights for
other (highly recommended to use the group instead, if the dir did not have
execution rights for others already)

And, just to be sure, let’s refresh libvirtd service to ensure that it
refreshes it’s permissions and picks up any newly created users:

$ sudo service libvirtd restart

NOTE: if you just added your user, make sure to restart libvirtd service

Preparing the workspace

Create a directory where you’ll be working, make sure qemu user can access it.

We will be using the example configurations of lago, for a custom setup you
might want to create your own.

Running the testing framework

This tests require that you have at least 36GB of free space under the
/var/lib/lago directory and an extra 200MB wherever you are running them

As an example, we will use the basic suite of the ovirt tests, so we have to
download them, you can run the following to get a copy of the repository:

$ git clone git://gerrit.ovirt.org/ovirt-system-tests

As the tests that we are going to run are for ovirt-engine 3.5, we have to add
the oVirt 3.5 release repository to our system so it will pull in the sdk
package, the following works for any centos/fedora distro:

$ yum install -y http://resources.ovirt.org/pub/yum-repo/ovirt-release35.rpm

Once you have the code and the repo, you can run the run_suite.sh script to
run any of the suites available (right now, only 3.5 and 3.6 basic_suites are
fully working):

$ cd ovirt-system-tests
$./run_suite.sh basic_suite_3.5

NOTE: this will download a lot of vm images the first time it runs, check
the section “template-repo.json: Sources for templates”
on how to use local mirrors if available.

Remember that you don’t need root access to run it, if you have permission
issues, make sure you followed the guidelines in the section
“user setup” above

This will take a while, as first time execution downloads a lot of stuff,
like downloading OS templates, where each one takes at least 1G of data.
If you are still worried that its stuck, please refer to the FAQ
to see if the issue you’re seeing is documented.

Once it is done, you will get the results in the directory
deployment-basic_suite_3.5, that will include an initialized prefix with a
3.5 engine vm with all the hosts and storages added.

To access it, log in to the web-ui at

		URL: https://192.168.200.2/

		Username: admin@internal

		Password: 123

If you’re running the framework on a remote machine, you can tunnel a local
port directly to the destination machine:

$ ssh -L 8443:192.168.200.2:443 remote-user@remote-ip
 ---- ================= ~~~~~~~~~
 (*) (**) (***)

(*) - The port on localhost that the tunnel will be available at.
(**) - The destination where the remote machine will connect when local machine
 connects to the local end of the tunnel.
(***) - Remote machine through which we'll connect to the remote end of the
 tunnel.

After creating the tunnel, web-ui will be available at https://localhost:8443/

Poke around in the env

You can now open a shell to any of the vms, start/stop them all, etc.

$ cd deployment-basic_suite_3.5
$ lagocli shell engine
[root@engine ~]# exit

$ lagocli stop
2015-11-03 12:11:52,746 - root - INFO - Destroying VM engine
2015-11-03 12:11:52,957 - root - INFO - Destroying VM storage-iscsi
2015-11-03 12:11:53,167 - root - INFO - Destroying VM storage-nfs
2015-11-03 12:11:53,376 - root - INFO - Destroying VM host3
2015-11-03 12:11:53,585 - root - INFO - Destroying VM host2
2015-11-03 12:11:53,793 - root - INFO - Destroying VM host1
2015-11-03 12:11:54,002 - root - INFO - Destroying VM host0
2015-11-03 12:11:54,210 - root - INFO - Destroying network lago

$ lagocli start
2015-11-03 12:11:46,377 - root - INFO - Creating network lago
2015-11-03 12:11:46,712 - root - INFO - Starting VM engine
2015-11-03 12:11:47,261 - root - INFO - Starting VM storage-iscsi
2015-11-03 12:11:47,726 - root - INFO - Starting VM storage-nfs
2015-11-03 12:11:48,115 - root - INFO - Starting VM host3
2015-11-03 12:11:48,573 - root - INFO - Starting VM host2
2015-11-03 12:11:48,937 - root - INFO - Starting VM host1
2015-11-03 12:11:49,296 - root - INFO - Starting VM host0

Cleanup

Once you’re done with the environment, run

$ cd deployment-basic_suite_3.5
$ lagocli cleanup

That will stop any running vms and remove the lago metadata in the prefix, it
will not remove any other files (like disk images) or anything though, so you
can play with them for further investigation if needed, but once executed, it’s
safe to fully remove the prefix dir if you want to.

Step by step now

As the above script has become a bit complicated, and it’s not (yet) part of
lago itself, this section will do the same as the script, but step by step with
lago only command to give you a better idea of what you have to do in a usual
project.

So, let’s get back to the root of the ovirt-system-tests repo, and cd into the
basic_suite_3.5 dir:

cd ovirt-system-tests/basic_suite_3.5

Let’s take a look to what is in there:

$ tree
.
├── control.sh
├── deploy-scripts
│ ├── add_local_repo.sh
│ ├── bz_1195882_libvirt_workaround.sh
│ ├── setup_container_host.sh
│ ├── setup_engine.sh
│ ├── setup_host.sh
│ ├── setup_storage_iscsi.sh
│ └── setup_storage_nfs.sh
├── engine-answer-file.conf
├── init.json.in
├── reposync-config.repo
├── template-repo.json
└── test-scenarios
 ├── 001_initialize_engine.py
 ├── 002_bootstrap.py
 ├── 003_create_clean_snapshot.py
 └── 004_basic_sanity.py

We can ignore the control.sh script, as it’s used by the run_suite.sh and
we don’t care about that in this readme.

init.json.in: The heart of lago, virt configurations

This init.json.in file, is where we will describe all the virtual elements of
our test environment, usually, vms and networks.

In this case, as the file is shared between suites, it’s actually a template
and we will have to change the @SUITE@ string inside it by the path to the
current suite:

$ suite_path=$PWD
$ sed -e "s/@SUITE@/$suite_path/g" init.json.in > init.json

Now we have a full init.json file :), but we have to talk about another file
before being able to create the prefix:

template-repo.json: Sources for templates

This file contains information about the available disk templates and
repositories to get them from, we can use it as it is, but if you are in Red
Hat office in Israel, you might want to use the Red Hat internal mirrors there,
for that use the common/template-repos/office.json file instead, see next for
the full command line.

NOTE: You can use any other template repo if you specify your own json file
there

TODO: document the repo store json file format

Initializing the prefix

Now we have seen all the files needed to initialize our test prefix (aka, the
directory that will contain our env). To do so we have to run this:

$ lagocli init \
 --template-repo-path=template-repo.json \
 deployment-basic_suite_3.5 \
 init.json

Remember that if you are in the Red Hat office, you might want to use the repo
mirror that’s hosted there, if so, run this command instead:

$ lagocli init \
 --template-repo-path=common/template-repos/office.json \
 deployment-basic_suite_3.5 \
 init.json

This will create the deployment-basic_suite_3.5 directory and populate it
with all the disks defined in the init.json file, and some other info
(network info, uuid... not relevant now).

This will take a while the first time, but the next time it will use locally
cached images and will take only a few seconds!

If you are using run_suite.sh

To use an alternate repository template file when running run_suite.sh,
you’ll have to edit it for now, search for the init command invocation and
modify it there, at the time of writing this, if you want to use the Red Hat
Israel office mirror, you have to change this:

38 env_init () {
39 $CLI init \
40 $PREFIX \
41 $SUITE/init.json \
42 --template-repo-path $SUITE/template-repo.json
43 }

by:

env_init () {
 $CLI init \
 $PREFIX \
 $SUITE/init.json \
 --template-repo-path common/template-repos/office.json
}

reposync-config.repo: yum repositories to make available to the vms

This file contains a valid yum repos definition, it’s the list of all the yum
repos that will be enabled on the vms to pull from. If you want to use any
custom repos just add the yum repo entry of your choice there and it will be
make accessible to the vms.

The internal repository is built from one or several ‘sources’, there are 2
types of sources:

		External RPM repositories:

A yum .repo file can be passed to the verb, and all the included
repositories will be downloaded using ‘reposync’ and added to the internal
repo.

		RPMs build from sources:

At the moment of writing, this utility knows to build 3 projects from
source:

		ovirt-engine

		vdsm

		vdsm-jsonrpc-java

All the builds are launched inside mock so mock permissions are required
if anything is to be built from source. That way host distro does not have
to match the distro of the VMs. RPMs build from source take precedence
over ones synced from external repos.

This is used by the ovirt reposetup verb. To prefetch and generate the local
repo, we have to run it:

$ lagocli ovirt reposetup --reposync-yum-config="reposync-config.repo"

This might take a while the first time too, as it has to fetch a few rpms from
a few repos, next time it will also use a cache to speed things up
considerably.

NOTE: From now on, all the lagocli command will be run inside the
prefix, so cd to it:

$ cd deployment-basic_suite_3.5

Bring up the virtual resources

We are ready to start powering up vms!

make sure you are in the prefix
$ pwd
 /path/to/ovirt-system-tests/deployment-basic_suite_3.5

$ lagocli start

This starts all resources (VMs, bridges), at any time, you can use the stop
verb to stop all active resources.

Run oVirt initial setup scripts

Once all of our vms and network are up and running, we have to run any setup
scripts that will configure oVirt in the machines, as we already described in
the init.json what scripts should be executed, the only thing left is to
trigger it:

$ lagocli ovirt deploy

This should be relatively fast, around a minute or two, for everything to get
installed and configured

Running the tests

Okok, so now we have our environment ready for the tests!! \o/

Lets get it on, remember that they should be executed in order:

$ lagocli ovirt runtest 001_initialize_engine.py
...
$ lagocli ovirt runtest 002_bootstrap.py
...
$ lagocli ovirt runtest 003_create_clean_snapshot.py
...
$ lagocli ovirt runtest 004_basic_sanity.py
...

This tests run a simple test suite on the environment:

		Create a new DC and cluster

		Deploy all the hosts

		Add storage domains

		Import templates

The tests are written in python and interact with the environment using the
python SDK.

Collect the logs

So now we want to collect all the logs from the vms, to troubleshoot and debug
if needed (or just to see if they show what we expect). To do so, you can just:

$ lagocli ovirt collect \
 --output "test_logs"

We can run that command anytime, you can run it in between the tests also,
specifying different output directories if you want to see the logs during the
process or compare later with the logs once the tests finish.

You can see all the logs now in the dir we specified:

$ tree test_logs
test_logs/
 ├── engine
 │ └── _var_log_ovirt-engine
 │ ├── boot.log
 │ ├── console.log
 │ ├── dump
 │ ├── engine.log
 │ ├── host-deploy
 │ ├── notifier
 │ ├── ovirt-image-uploader
 │ ├── ovirt-iso-uploader
 │ ├── server.log
 │ └── setup
 │ └── ovirt-engine-setup-20151029122052-7g9q2k.log
 ├── host0
 │ └── _var_log_vdsm
 │ ├── backup
 │ ├── connectivity.log
 │ ├── mom.log
 │ ├── supervdsm.log
 │ ├── upgrade.log
 │ └── vdsm.log
 ├── host1
 │ └── _var_log_vdsm
 │ ├── backup
 │ ├── connectivity.log
 │ ├── mom.log
 │ ├── supervdsm.log
 │ ├── upgrade.log
 │ └── vdsm.log
 ├── host2
 │ └── _var_log_vdsm
 │ ├── backup
 │ ├── connectivity.log
 │ ├── mom.log
 │ ├── supervdsm.log
 │ ├── upgrade.log
 │ └── vdsm.log
 ├── host3
 │ └── _var_log_vdsm
 │ ├── backup
 │ ├── connectivity.log
 │ ├── mom.log
 │ ├── supervdsm.log
 │ ├── upgrade.log
 │ └── vdsm.log
 ├── storage-iscsi
 └── storage-nfs

Cleaning up

As before, once you have finished playing with the prefix, you will want to
clean it up (remember to play around!), to do so just:

$ lagocli cleanup

FAQ

		How do I know if the run_suite.sh is stuck or still running?

Sometimes the script is downloading very big files which might
Seem to someone as the script is stuck.
One hacky way of making sure the script is still working is
to check the size and content of the store dir

$ ls -la /var/lib/lago/store

This will show any templates being downloaded and file size
changes.

 © Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

_static/lago_logo.png
ago

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Lago 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, David Caro.
 Last updated on Jan 22, 2016.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/plus.png

